2.7. Силы в электрических полях.

2.7.1. Пондеромоторные силы.

На диэлектрики и проводники, помещенные в электрические поля, действуют силы, так называемые, – *пондеромоторные силы*. Термин *пондеромоторные силы* устарел, т.к. исторически он относился к силам, действующим на "весомые" объекты и тела. Природа сил вполне известна: это силы, действующие на сторонние и связанные заряды в электрическом поле. Приведем несколько примеров действия таких сил:

- 1) на поверхность заряженного металлического шара действуют Кулоновские силы, которые расталкивают заряды и пытаются растянуть поверхность;
- 2) на диэлектрик в конденсаторе действуют силы сжатия с одной стороны, а с другой происходит втягивание диэлектрика внутрь конденсатора;
- 3) к пондеромоторным силам относятся силы, действующие, например, на наведенные диполи в веществе. Ранее в §1.7 была получена формула (1.7.15), описывающая силу, действующую на диполь в электрическом поле. Для однородного поля эта сила равна нулю, однако, в веществе мы имеем дело с различными, в том числе неоднородными, полями и различными конфигурациями зарядов.

Сила, действующая на какой-либо заряд, определяется, очевидно, напряженностью того поля, в которое помещен этот заряд (а не того поля, которое возбуждается им самим):

$$\vec{F} = q\vec{E} = -q \operatorname{grad}\varphi. \tag{2.7.1}$$

Сила, действующая на непрерывно распределенный заряд, записывается аналогично:

$$d\vec{F} = dq \cdot \vec{E} = \vec{E}\rho dV \tag{2.7.2}$$

и тогда объемная плотность сил равна:

$$\vec{f} = \frac{d\vec{F}}{dV} = \rho \vec{E} = -\rho \operatorname{grad} \varphi . \tag{2.7.3}$$

Рассмотрим объемные силы, действующие на диэлектрик. Сила, приложенная к элементу объема dV, равна сумме сил, действующих на элементарные диполи внутри dV:

$$d\vec{F} = \sum_{dV} (\vec{p}_i, \nabla) \vec{E} , \qquad (2.7.4)$$

причем здесь суммирование ведется по всем элементарным диполям в элементе объема dV. Так как элемент объема мал, то вектор напряженности электрического поля (медленно меняющаяся величина) можно считать неизменным на протяжении этого элемента объема. Тогда, вводя вектор поляризации, имеем:

$$\sum_{dV} (\vec{p}_i, \vec{\nabla}) \vec{E} = \left(\sum_{dV} \vec{p}_i, \vec{\nabla} \right) \vec{E} = (\vec{P}dV, \vec{\nabla}) \vec{E} = (\vec{P}, \vec{\nabla}) \vec{E}dV$$
 (2.7.5)

Объемная плотность сил в диэлектрике:

$$\vec{f} = \frac{d\vec{F}}{dV} = (\vec{P}, \nabla)\vec{E}$$
 (2.7.6)

Для изотропного диэлектрика имеем простую связь между вектором поляризации и вектором напряженности электрического поля

$$\vec{P} = \alpha \vec{E} = \frac{\varepsilon - 1}{4\pi} \vec{E} ,$$

тогда объемная плотность сил равна:

$$\vec{f} = \frac{\varepsilon - 1}{4\pi} (\vec{E}, \vec{\nabla}) \vec{E}$$
 (2.7.7)

Воспользуемся тождеством из векторной алгебры (1.7.16) из §1.7, переписанным для случая, когда $\vec{A} = \vec{B} = \vec{E}$:

$$\frac{1}{2}\vec{\nabla}(\vec{E},\vec{E}) = (\vec{E},\vec{\nabla})\vec{E} + [\vec{E},rot\vec{E}]$$
(2.7.8)

Поскольку для электростатического поля $rot\vec{E} = 0$, получаем для объемной плотности сил:

$$\vec{f} = \frac{\varepsilon - 1}{8\pi} \nabla \left(E^2 \right) = \frac{\varepsilon - 1}{8\pi} \operatorname{grad} \left(E^2 \right)$$
 (2.7.9)

Далее, поскольку имеем однородный и изотропный диэлектрик, то можно ввести плотность энергии электрического поля $w = \varepsilon E^2/8\pi$ и вынести диэлектрическую проницаемость из-под оператора градиента:

$$\vec{f} = \frac{\varepsilon - 1}{\varepsilon} \operatorname{grad}w \tag{2.7.10}$$

Последние формулы для объемной плотности сил справедливы как для абсолютно жестких диэлектриков, так и для сжимаемых диэлектриков. Последнее справедливо лишь при условии, что их поляризованность (поляризация) линейно зависит от массы, т.е. дипольные моменты молекул и атомов при сжатии и растяжении элемента объема не изменяются.

Если диэлектрическая проницаемость не постоянна $\varepsilon \neq const$, и если имеем дело со сжимаемыми диэлектриками, то определение пондеромоторных сил представляет собой довольно сложную задачу. Общий метод вычисления пондеромоторных сил дает термодинамика — термодинамика диэлектриков. Определяются термодинамические функции диэлектриков — свободная энергия, термодинамический потенциал, энтальпия. В этом курсе мы не будем этим касаться этих вопросов.

2.7.2. Силы, действующие на поверхностные заряды.

Ранее мы уже немного говорили о силах, действующих на поверхностные заряды. Если имеется поверхность, заряженная плотностью заряда σ , то электрическое поле известно по обе стороны, причем $E_{2n}-E_{1n}=4\pi\sigma$, а на самой поверхности электрическое поле не определено. Как искать силу, действующую на единицу поверхности?

Рассмотрим уединенный проводник (см рис. 7.1) с поверхностной плотностью заряда σ . Одноименные заряды расталкиваются, поэтому взаимодействие между поверхностными зарядами растягивает поверхность проводника. Рассмотрим элемент поверхности dS:

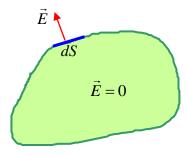


Рис. 7.1.

Рис. 7.2.

- 1) поле с внешней стороны равно: $\vec{E} = 4\pi \sigma \vec{n}$, где \vec{n} единичный вектор нормали;
- 2) поле внутри E=0.

Поле внутри и снаружи складывается из поля, создаваемого самим кусочком dS-E', и из поля всех остальных зарядов — E''. Поле E' одинаково по величине по обе стороны от площадки dS, но противоположное по направлению (см рис. 7.2). Поле E'' одинаково чуть выше и чуть ниже площадки dS в силу непрерывности вектора напряженности (когда нет зарядов). Тогда с внешней стороны dS имеем:

$$E = E' + E'' = 4\pi\sigma$$

С внутренней стороны проводника имеем:

$$E = 0 = E' - E''$$

Из этих соотношений получаем поле, в котором находится элемент заряженной поверхности dS:

$$E' = E'' = 2\pi\sigma$$
 (2.7.11)

Тогда сила, испытываемая зарядом σdS на элементе поверхности, определяется полем E'' и равна:

$$dF = E'' \sigma dS = 2\pi\sigma^2 dS = \frac{1}{2}E\sigma dS \qquad (2.7.12)$$

Пондеромоторная сила, действующая на единицу поверхности, – *поверхностная плотность пондеромоторных сил*:

$$\frac{dF}{dS} = f = 2\pi\sigma^2 = \frac{1}{2}E\sigma = \frac{E^2}{8\pi}$$
 (2.7.13)

Или в векторной форме имеем для поверхностной плотности сил:

$$\vec{f} = 2\pi\sigma^2 \vec{n} \tag{2.7.14}$$

Фактически, если рассматривать модуль этого выражения, это есть давление, испытываемое поверхностью под влиянием кулоновских сил отталкивания.

2.7.3. Определение пондеромоторных сил из энергии.

Один из общих способов определения сил через производную (градиент) от энергии системы:

$$\vec{E} = -\nabla \phi \equiv -grad\phi, \qquad \vec{F} = -\nabla W$$
 (2.7.15)

В качестве примера рассмотрим силы, действующие на пластины плоского конденсатора. Энергия плоского конденсатора равна:

$$W = \frac{1}{2}CU^2 = \frac{Sd}{8\pi}E^2 \tag{2.7.16}$$

В этом случае оператор градиента в (2.7.15) сводится к производной энергии по расстоянию между пластинами d: и тогда получаем силу, действующую на пластины конденсатора

$$F = -\nabla W = -\frac{S}{8\pi}E^2 = -\frac{S}{8\pi}(4\pi\sigma)^2 = -2\pi\sigma^2 S$$
 (2.7.17)

Проявлением пондеромоторных сил объясняются механические напряжения в диэлектрических слоях, подъем или втягивание жидкого диэлектрика в конденсатор и т.д.